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values of u at points in R in a network of squares with spacing A= 1/3.
'5. Solve the Laplace equation 2u=0. The boundary conditionsare u=0
on the inner boundary and =1 on the outer boundary (see Fig. 7.14)

(i) Give the linear equation system for the u-values at the nodes when
the 5-point scheme is used. " (BIT 18 (1978), 366)

(i) Write the Gauss-Seidel iteration procedure for solution of the sys-
tem of equations.

4z 0 Ay
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L@
uz0 -
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u=0 ’ u=0
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Fig. 7.11 Mesh points
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Fig. 7.12 Mesh points
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Fig. 7.15 Mesh points

9. Use the network consisting of the equilateral triangles with side 4 as

10.

shown in the Figure 7.16, to obtain the following difference approxima-
tions:

@) h’vzuo-—z_,‘—(g =)
) Hrtio=1E-(1200-3F w+ ¥, u)
(i) h*p*uo 9( o lgm Euj

(iii) Find the solution of the boundary value problem piu= - 1 onan
equilateral triangle of side 4 with #=0 on the boundary with A= 1.

Fig. 7.16 &quilateral triangular network

We cover the plane with regular hexagons as shown in Fig. 7.17 with
side h, and we take the vertices to be the mesh points of a hexagonal
grid. Prove that the difference approximation for the Laplace operator
is given by ' ’

4 3
2 = — —
h Vzuo 3 (‘g Ui 3uo)
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Fig. 7.17 Hexagonal network

-11. In a general triangular network with coordinates and dimensions as
shown in Figure 7.18, the operator p2 can be transformed into

1
2 sin «; sin «2 sin a3

. a2 at . 02
[sm 2115;2 +sin zazza—v2 +sin 21337’2]

Using this, or otherwise, obtain a suitable difference representation for
p?$ at a typical point Po of this network in terms of the values at Po
and the six surrounding points. This representation of p?2 is used for
the solution of p2¢=c inside a closed region whose boundary is made
up of mesh line, with ¢ specified on the boundary. Show that the Jacobi
method will converge if 0 < ay, @2, a3 < /2,

12. Obtain the solution of the boundary value problem

Py Py _ou

a—x~2 3—;2—2;.)}= -2in .(R.
u=0ondR

VR VA

Fig. 7.18 General triangular network
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is used to solve the system of linear equations. Show that for the con-
vergence of the iterative method the optimal value of « is the smaller
root of the quadratic equation

( = +¢ —")22 dat1=0
cos - +cos 3 ) @ a4 1=

where L and M are the mesh divisions on the sides of the rectangle.
The value of « will be between $ and .
19. Find the solution of the differential equation

pru=—1 0<x<1 0<y<I
a .

3—::=0 on x=0and y=0

du

$= on x=1

-gt;:=—2 on y=1

where n is an inward normal.
Use the 5-point difference scheme with A=1.
20. Solve the differential equation
—pu+0.lu=1, 0<x,y <1
subject to the boundary conditions

u=0onx=0 and y=0

ou -
%—0 onx=1 and y=1

where n is the inward normal.
Use th 5-point difference scheme with /= 5
21. Solve the boundary value problem

Pu |, u
Tataga= L 0<xy<I

u
u=0o0nx=0, y=0,y=1and -5'-,=u

on x =1, where n is the inward normal.
Use the difference scheme of 0(h?) with h=4.
.22. The function u(x, y) satisfies the equation
- pru+to(x, Yu=f(x,)
throughout the triangular region 0AB (see Fig. 7.20) together with the
boundary conditions
u=¢(x, y)on O4, OB
Ou a(x, y)u=vy(x, y) on AB

on
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23.

o, f, , a, v being given functions, and n the outward normal.

B (0,3h)

——0; a

] , v ‘ A(3h,0)
Fig. 7.20 Mesh points
By integrating over suitable regions, show that approximations to the
values of u at P, O, R are given by
(4 + h2op)up— g — ur = h*p+¢(h, 0)+¢(0, h)
—up+(2++/2heg + 4 h?oQ)ug
= $ W o +H2h, 0)++/2hyvo
‘—up-+(2++v2ur+ 4h%oR)ur
=4k fr+¢(0, 2h) + v/ 2hyr
Show further that the errors in these equations are respectively of 0(h*),
(%), OA%).
" Obtain up in the case =2, f= —4+2(x+y)?
é=x2 on y=0, $=)? on x=0
a=4/2, y=1512 and h=1 .
Show that when the 5-point difference approximation is applied to the
problem , -
p2u+Au=0 in R
u=0 ondR

where R is a unit square, the characteristic values of A correspond to the
problem )

@} +8+Num=0,1 < I, m < N
with w,m=0 0<l,m< N+1

1
,\ -
w}lere WA and h= (N+ K1)
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30.

where w i is the nth iteration approximation to us,m, Uil
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the corresponding system of difference equatlons, with step size h=1.
: (BIT 5 (1965), 294)

The Extrapolated Altematmg Direction I'mplicit (EADI) ‘method for
solving

plu=0
over the open unit circle R =[(x, ); 0 < x,y < 1] with appropriate
boundary conditions prescrlbed on the boundary dR, can be written in
the form :
A+r8bul " = (1 +r8) = wrF)ulm
“(1+rd )15",;"” ulz",:' D 4 r8ul

"+12) is an inter-

‘mediate approxxmat:on to us,m, ris a fixed positive iteration parameter ’

wis an extrapolatnon parameter, and
' 1
F“’ﬂ" = (8 +82 + 208 ) Ulym, 0 o< _i
Show that the optlmum value of the parameter is given by
-1 -1
= 2 7 y=" —40)? sin2
f (4 sin N) , M [1+(1 40)? sin N]

-where i=1/N is the mesh size.
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Finite Element Methods

8.1 INTRODUCTION

The finite difference methods described in previous chapters can be con-
sidered as a direct discretization of differential equations. In finite element
methods we generate difference equations by using app.oximate methods
with the piecewise polynomial solution. The details of this formulation will
be discussed, including a brief description of the weighted residual and the
variational methods. We also discuss the construction of the piecewise poly-
nomial functions in one, two and three space dimensions. Finally we study
the application of the finite element methods to the solution of ordinary
and partial differential equations.

8.2 WEIGHTED RESIDUAL METHODS

The weighted residual methods are the approximate methods which pro-
vide analytical procedure for obtaining solutions in the form of functions
which are close in some sense to the exact solution of the boundary value
problem or the initial value problem. We formulate the weighted residual
methods for the boundary value problem

Llu]=r(x), xR 8.1
UP[“]=YF’ an.‘R : . (8'2)

where L[u] denotes a general differential operator involving spatial deriva-
tives of u; Up[u] represents the appropriate number of boundary conditions
and R is the domain with boundary dR. The coordinate x is assumed as a
one dimensional coordinate in the following section, although the definition
of x may be extended and interpreted as a coordinate in multidimensional -
space. The solution of the boundary value problem (8.1)-(8.2) is often attem-
pted by assuming an approximation to the solution u(x), an expression of
the form '

u(x) =~ wix, a1, az, .-, an) (8.3)
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The size of one or more subdomains decreases as N is increased, with the
result that the differential equation is satisfied on the average in smaller
and smaller subdomains, and hopefully the residue approaches zero every-
where,

8.2.3 Galerkin method |
In the Galerkin method the weighting function is chosen to be

W= In(x, a)

oa J=1,2,..,N o (8.15)

where w(x, a) is the approximate solution of the problem. Equations (8.8)
in the Galerkin method become '

i WOE(X, 2) dx=0, j=1,2, ..., N (81.6)

8.2.4 Moment method
In this method, we take the weighting function

Wi=pP(x) (8.17)
where Pj(x) are polynomials. Equations (8.8) become '
J‘ PAX)E(x, a) dx=0, j=1,2, ... N (8.18)

g{ .
The method of moments is similar to the Galerkin method except that the
residual is made orthogonal to members of a system of functions which need

not be the same as the approximating function. In practice, we take Wi=x/,
and get better results if we orthogonalize them before use.

8.2.5 Collocation method

We choose N points X1, X2, .., X in the domain R and define the weigh-
ting function as

W;=8(x ~x;) (8.19)

where 8 represents the unit impulse or Dirac delta which vanishes everywhere
except at x =x;. The collocation equations become

g! 8(x—x/)E[x, a] dx=0 (8.20)

which can be written as
Elxj, a]=0, j=1,2,.., N ‘ (8.21)
This criterion is thus equivalent to putting E[x, a] equal to zero at N points

in the domain Q. The distribution of the collocation points on R is arbit-

rary. However, in practice-we distribute the collocation points uniformly
on R, '



